Role of Bcl-xL induction in HGF-mediated renal epithelial cell survival after oxidant stress.

نویسندگان

  • Jinglan Zhang
  • Junwei Yang
  • Youhua Liu
چکیده

Hepatocyte growth factor (HGF) is known to promote renal epithelial cell survival by dual mechanisms involving Bad phosphorylation and Bcl-xL induction. However, it remains elusive as to the relative contributions of these two events to HGF-mediated cytoprotection. Here we investigated the role and mechanism of HGF in protecting renal epithelial cells from death induced by oxidant stress both in vitro and in vivo. Simultaneous incubation of human kidney proximal tubular epithelial cells (HKC-8) with HGF failed to protect them from oxidant stress-induced cell death, even though it was capable of inducing endogenous Akt and Bad phosphorylation. However, pre-incubation of HKC-8 cells with HGF for 48 hours dramatically promoted their survival and prevented caspase-3 cleavage and activation induced by H(2)O(2). A close association between Bcl-xL induction and effective cytoprotection by HGF was observed in HKC-8 cells after H(2)O(2) treatment. Furthermore, ectopic expression of exogenous Bcl-xL via adenoviral vector prevented H(2)O(2)-triggered caspase-3 activation. In a mouse model of acute kidney injury induced by ischemia/reperfusion, pre-administration of HGF expression vector drastically prevented apoptosis and largely preserved kidney function, whereas much less protective effect was observed when HGF gene was given immediately after ischemic injury. These results suggest that Bcl-xL induction plays an imperative role in mediating HGF cytoprotection of renal epithelial cells after death challenge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hepatocyte growth factor promotes renal epithelial cell survival by dual mechanisms.

Hepatocyte growth factor (HGF) has been shown to protect renal epithelial cells against apoptosis. To define the mechanism by which HGF inhibits apoptosis, we investigated the effect of HGF on the phosphorylation and expression of the Bcl-2 family proteins. Using a human proximal tubular epithelial cell (HKC) line as a model, we demonstrated that constitutive expression of HGF conveyed marked r...

متن کامل

Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.

Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...

متن کامل

Regulation of Caspase-3 and -9 Activation in Oxidant Stress to Renal Tubular Epithelial Cells by Forkhead Transcription Factors, Bcl-2 Proteins and Mitogen- Activated Protein Kinases

Cytotoxicity to renal tubular epithelial cells (RTE) is dependent on the relative response of cell survival and cell death signals triggered by the injury. Forkhead transcription factors, Bcl-2 family member Bad, and mitogen-activated protein kinases are regulated by phosphorylation that plays crucial roles in determining cell fate. We examined the role of phosphorylation of these proteins in r...

متن کامل

Bcl-2-related protein A1 is an endogenous and cytokine-stimulated mediator of cytoprotection in hyperoxic acute lung injury.

Hyperoxic acute lung injury (HALI) is characterized by a cell death response with features of apoptosis and necrosis that is inhibited by IL-11 and other interventions. We hypothesized that Bfl-1/A1, an antiapoptotic Bcl-2 protein, is a critical regulator of HALI and a mediator of IL-11-induced cytoprotection. To test this, we characterized the expression of A1 and the oxygen susceptibility of ...

متن کامل

Bcl-xL promotes metastasis independent of its anti-apoptotic activity

Bcl-xL suppresses mitochondria-mediated apoptosis and is frequently overexpressed in cancer to promote cancer cell survival. Bcl-xL also promotes metastasis. However, it is unclear whether this metastatic function is dependent on its anti-apoptotic activity in the mitochondria. Here we demonstrate that Bcl-xL promotes metastasis independent of its anti-apoptotic activity. We show that apoptosis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of clinical and experimental pathology

دوره 1 3  شماره 

صفحات  -

تاریخ انتشار 2008